In an effort to discover anticancer agents with simultaneous effects on tubulin and angiogenesis, we designed and synthesized two series of piperlongumie (PL) derivatives by replacing of phenyl group with a variety of benzoheterocycle (series II) or cyclizing the C7-C8 olefin into an aromatic heterocycle (series I). Most of the new compounds showed better antiproliferative activities against six cancer cell lines than the parent drug PL. Compound II-14b had the best cytotoxic profile of these two series in cancer cells, whilst being relatively low cytotoxicity against normal human cells and high potency against drug-resistant cells. It disrupted cellular microtubule networks and inhibited tubulin assembly with an IC50 value of 5.8 μM. Further studies elucidated that II-14b showed antitumor activities through multiple mechanisms, including the pruduction of abundant ROS, the dissipation of mitochondrial membrane potential, the accumulation of DNA double-strand breaks, and the induction of cell cycle in G2/M phase. More importantly, we have observed that it possesses potential anti-angiogenesis capabilities, including suppression of HUVECs cell migration, invasion, and endothelial tube formation in vitro and in vivo. In vivo assessment indicated that II-14b inhibits the growth and metastasis of MGC-803 xenograft tumour in zebrafish. These findings show that II-14b is a high-efficacy and non-toxic antitumor agent.Copyright ? 2022 Elsevier Masson SAS. All rights reserved.
原文鏈接:http://www.ncbi.nlm.nih.gov/pubmed/36162214