Numerous studies have reported that the toxicity differences among metals are widespread; however, little is known about the mechanism of differences in metal toxicity to aquatic organisms due to the lack of quantitative understanding of their adverse outcome pathway. Here, we investigated the effects of Cd and Cu on bioaccumulation, gene expression, physiological responses, and apical effects in zebrafish larvae. RNA sequencing was conducted to provide supplementary mechanistic information for the effects of Cd and Cu exposure. On this basis, we proposed a quantitative adverse outcome pathway (qAOP) suitable for metal risk assessment of aquatic organisms. Our work provides a mechanistic explanation for the differences in metal toxicity where the strong bioaccumulation of Cu enables the newly accumulated Cu to reach the threshold that causes different adverse effects faster than Cd in zebrafish larvae, resulting in a higher toxicity of Cu than that of Cd. Furthermore, we proposed a parameter CIT/BCF (the ratio of internal threshold concentration and bioaccumulation factor) that helps to understand the toxicity differences by combining the information of bioaccumulation and internal threshold of adverse effects. This work demonstrated that qAOP is an effective quantitative tool for understanding the toxicity mechanism and highlight the importance of toxicokinetics and toxicodynamics at different biological levels in determining the metal toxicity.
原文鏈接:http://www.ncbi.nlm.nih.gov/pubmed/36083827