Perfluorooctane sulfonic acid (PFOS) has been widely detected in environment and organisms. PFOS has been identified as the driving agent for the behavioral changes of zebrafish larvae, while the underlying molecular mechanism remains unclear. In this study, zebrafish embryos/larvae were exposed to 0, 0.04, 0.1, 0.4 and 1?μM PFOS for 166?h. The locomotor behaviors and the mRNA transcription of genes in neuromuscular system were detected. Exposure to PFOS did not affect the hatching/death rates and body length, but increased the heart beat rates and frequency of spontaneous tail coiling. Locomotor behavior in zebrafish larvae of 0.4 and 1?μM PFOS groups were increased in the light condition. Additionally, the levels of acetylcholine (Ach) in 0.4?μM PFOS group and dopamine (DA) in 0.1, 0.4 and 1?μM PFOS groups were found to be significantly increased. The expression of genes related to the synthesis and decomposition of ACh竹揍,the synthesis and receptor of DA, and fosab was increased in the different PFOS treatment groups, while the expression of all the other genes of the neuromuscular system were significantly reduced. The findings of this investigation demonstrated that PFOS exposure may alter the locomotor behavior of zebrafish through disrupting the expressions of genes in neuromuscular system. The disturbed process of neurotransmitter transmission and muscle contraction caused by PFOS may be the dominant mechanism of hyperactivity in zebrafish.Copyright ? 2022. Published by Elsevier B.V
原文地址:http://www.ncbi.nlm.nih.gov/pubmed/35931148