0512-8957 3668 / 18013764755
Combined effects of micro-/nano-plastics and oxytetracycline on the intestinal histopathology and microbiome in zebrafish (Danio rerio)
來源: | 作者:Ziyue Yu 1, Ling Zhang 1, Qiansheng Huang 2, Sijun Dong 3, Xinhong Wang 4, Changzhou Yan 5 | 發(fā)布時間: 2022-07-15 | 410 次瀏覽 | 分享到:

Accumulated evidence has demonstrated that microplastics and oxytetracycline (OTC) affect organisms, but few studies have investigated their combined effects on aquatic organisms. In this study, adult zebrafish (Danio rerio) were exposed to single and binary-combined contamination of micro-, nano-sized polystyrene plastics and OTC for 30 days, and the intestinal histopathology, gut microbiota and antibiotic resistance genes (ARGs) of zebrafish were measured. The results showed that the intestinal epithelial damage increase with the decrease of plastic sizes. Nano-sized plastics, OTC and their combined exposure caused intestinal epithelial damage, and co-exposure with micro-sized plastics reduced the intestinal damage caused by single OTC exposure. The gut microbial communities were affected by the combined exposure to microplastics and OTC. Compared with the blank control, the relative abundance of Fusobacteria increased 12.7 % and 21.1 % in OTC combined with 45-85 μm micro-plastics (MOTC) and 40-54 nm nano-plastics (NOTC), respectively, and that of Bacteroidetes increased 26.2 % and 18.6 % in the MOTC and NOTC treatments, respectively. The effects of MOTC and NOTC on the biodiversity of the zebrafish gut microbiome were different; MOTC increased the biodiversity by 11.3 % compared with the blank control, whereas NOTC decreased the biodiversity by 8.8 % compared with the blank control. Furthermore, the abundance of ARGs in 40-54 nm nano-plastics, MOTC and NOTC treatments was increased 96.9 %, 96.6 % and 68.8 % compared with the control group, respectively. Additionally, significant differences were observed in ARGs characteristics between the micro- and nano-plastics treated groups whether combined with OTC or not. These results are essential to further understand the combined ecotoxicological effects of micro- or nano-plastics and antibiotics on aquatic organisms.

Keywords: Antibiotic resistance genes; Antibiotics; Micro-/nano-particles; Microbial community; Polystyrene plastics.


日韩女神精品自拍,在线观看免费播放日韩精品,日韩一区在线播放手机在线,欧美日韩精品午夜免费看